Quantitative weighted mixed weak-type inequalities for classical operators
نویسندگان
چکیده
منابع مشابه
Weighted Weak Type Inequalities for the Hardy Operator When
The paper studies the weighted weak type inequalities for the Hardy operator as an operator from weighted L to weighted weak L in the case p = 1. It considers two different versions of the Hardy operator and characterizes their weighted weak type inequalities when p = 1. It proves that for the classical Hardy operator, the weak type inequality is generally weaker when q < p = 1. The best consta...
متن کاملWeighted Norm Inequalities for Fractional Operators
We prove weighted norm inequalities for fractional powers of elliptic operators together with their commutators with BMO functions, encompassing what is known for the classical Riesz potentials and elliptic operators with Gaussian domination by the classical heat operator. The method relies upon a good-λ method that does not use any size or smoothness estimates for the kernels. Indiana Univ. Ma...
متن کاملWeighted Inequalities for Generalized Fractional Operators
In this note we present weighted Coifman type estimates, and twoweight estimates of strong and weak type for general fractional operators. We give applications to fractional operators given by an homogeneous function, and by a Fourier multiplier. The complete proofs of these results appear in the work [5] done jointly with Ana L. Bernardis and Maŕıa Lorente.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 2016
ISSN: 0022-2518
DOI: 10.1512/iumj.2016.65.5773